PLex

Plastic litter extension for ecoinvent

estimating plastic litter over the life cycle

Julia Gutke & Andreas Ciroth

July 2023

Table of content

Tab	ole of content	2
Tab	ole of figures	2
1	Introduction	3
2	Assumptions and extension of the database	4
3	Implementation and examples	5
3	B.1 Example of a product system	9
4	Further work	11
5	Contact	12
Refe	erences	13

Table of figures

Figure 1: demonstration of how plastic litter appear as an output flow in openLCA5
Figure 2: example of plastic litter from process "maize grain production"6
Figure 3: example of plastic litter from process "packaging film production"6
Figure 4: Contribution of other processes (contribution tree) to the plastic litter of "maize grain
production"7
Figure 5: Locations of plastic litter occurring as a result of "maize grain production"7
Figure 6: Sankey diagram showing different processes contribution to the total plastic litter from
"packaging film production"8
Figure 7: example of a simplified product system9
Figure 8: top 5 contributing processes to plastic litter in the simplified product system
Figure 9: Sankey of the contribution distribution for our simplified example
Figure 10: Regional distribution of the plastic litter impact for our simplified example

1 Introduction

This work builds on earlier work by Ciroth & Kuoame (2019) that aimed to support the modelling of plastic litter in life cycle inventories. Plastic pollution is a globally identified problem currently receiving much attention, yet it is still overlooked when performing life cycle analysis (LCA). The idea presented by Ciroth & Kuoame is that the plastic litter of a certain (unit) process is calculated by multiplying the total amount of expected plastic inflow to that process (by adding the plastic content of flows entering that process) with the littering probability (the expected amount of litter) of that process, see equation below.

$$PL_j = p_{litter} * \sum_{i=1}^n PC_i$$

Where:

- PL_j = plastic litter from process j [kg]

- P_{litter} = expected probability of litter from process j [%]
- PC_i = plastic content of flow i [kg]
- n = number of incoming flows for process j

The aim of this work is to create an extension of the ecoinvent database to be able to perform this calculation, i.e. add a new feature to the database to make this calculation possible. This includes to make an estimation of the plastic content of all flows as well as making estimations for the weight of flows in cases where the flow is not expressed in mass to be able to convert the unit to mass. It also includes estimating the littering probability of all processes. Important to keep in mind is that these are initial and rough estimations. Since the database contains over 3000 flows and more than 20 000 processes, they are estimated in groups. The content and probability are estimated according to classes further described in section 2, "Assumptions and extension of the database". Hence, the resulting output should not be taken as an accurate number, but rather be used to evaluate potential internal relationships (i.e. what flows imply a potentially high vs. low risk to create plastic pollution?) and hot-spot analysis. This is also an initial attempt to test a calculation method that could be further refined to give more accurate results.

2 Assumptions and extension of the database

Both plastic content of flows and the littering probability of processes were defined according to pre-defined classes.

For all flows, the plastic content is estimated as weight-% of that flow. Flows are evaluated as groups, e.g. all flows within the category "D: Electricity, gas, steam and air conditioning supply" are assumed to have 0% plastic content, and are not evaluated individually. All flows within the category "2013: Manufacture of plastics and synthetic rubber in primary forms" are assumed to have a 100% plastic content. The plastic content of flows is in general grouped as:

- all plastic 100% (example: primary plastic flows, e.g. polyethylene)
- very high 95% (example: plastic products, waste plastics)
- high 50% (example: paints)
- medium 10% (example: vehicles)
- low 0.1% (example: fibreboards, soaps)
- very low 0.0001% (example: most waste flows with no obvious plastic content)
- none 0% (example: metals, electricity)

In some exception cases, these classes are not used, e.g. when the plastic content could be generalized by another source. For example, the plastic content *of computer, electronic and optical products* was assumed to be 20%, based on the plastic content of e-waste (Sahajwalla & Gaikwad, 2018). The contents of flows in group A: Agriculture, forestry and fishing were estimated based on work by Richardson, Hardesty, & Wilcox (2019) and the report Sowing a plastic planet - how microplastics in agrochemicals are affecting our soils, our food and our future by Carlini & Drugmand (2022).

For all processes, the plastic litter-potential is estimated according to the same system and refers to the expected littered amount. Processes are also categorized as open (the pollution is directly released to the environment. e.g. tyre wear) or closed (the litter is kept within another system, such as inside an airplane), and based on what type of release it is; use, unforeseen disposal or accidental.

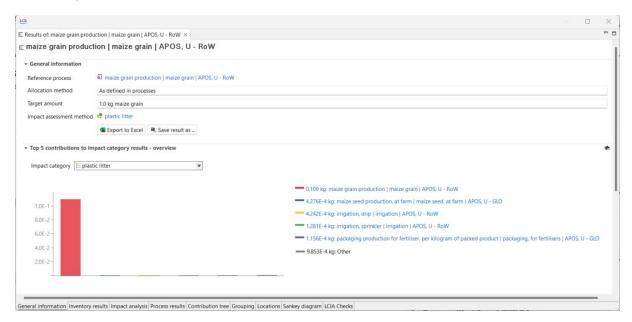
For all flows with another flow property than mass, the mass per unit is estimated. This is done in a similar way as the plastic content, i.e. in classes, for most flows. Most flows that haven't

got mass as a property has "number of item(s)", and the weight of these are estimated in classes according to the following list:

- very large > 100 000 000 kg, all objects in this category have the weight 5 000 000 000 (example: airport or reservoir for hydropower plant)
- large > 1 000 000 kg, = 50 000 000 kg (example: factories or smaller infrastructures, e.g. mining infrastructures)
- medium > 10 000 kg, = 500 000 kg (example: most buildings, airplanes, ships)
- small > 100 kg, = 5000 kg (example: vehicles and larger machines)
- very small < 100 kg, = 50 kg (example: domestic goods and everything smaller than that)

For other units (e.g. area, length or volume), the weight/unit was either defined in the description of the processes producing the flow and could be used directly, or the weight-class was estimated according to the list above. Hence, some numbers are very exact while others are more general.

3 Implementation and examples


Potential plastic litter is added to the database as a new exchange, i.e. as a new elementary output flow from all processes of concern (where the plastic litter > 0). It then appears as an output flow in openLCA, see Figure 1.

ke, capture by long lines and l	anding whole, fresh demersal f	ich fr. V									
nputs/Outputs: hake,	capture by long liner	and landin	g whole,	fresh demer	sal fish, fre	esh APOS	, U - RER				
Inputs										o ×	1.2
Flow	Category	Amount	Unit	Costs/Reven	Uncertainty	Avoided wa	Provider	Data quality	Location	Description	
diesel, burned in fishing v	031:Fishing/0311:Marine fis	55.64842	📼 MJ		lognormal:		a market fo	(4; 1; 5; 1; 1)		Combustion	
Ø Fish, demersal, in ocean	Resource/biotic	1.00842	🚥 kg		lognormal:			(3; 1; 5; 1; 1)		Demersal fis	
Ianded anchovy, fresh	031:Fishing/0311:Marine fis	0.41082	🚥 kg		lognormal:		🔊 market fo	(3; 1; 5; 3; 3)		Bait used in	
Iong liner maintenance, s	031:Fishing/0311:Marine fis	0.01404	🚥 kg		lognormal:		Iong liner	(3; 1; 5; 2; 2)		Amount of L	
Iong liner, steel	031:Fishing/0311:Marine fis	0.01404	🚥 kg		lognormal:		market fo	(3; 1; 5; 2; 2)		Amount of L	
Iubricating oil	192:Manufacture of refined	0.01474	🚥 kg		lognormal:		a market fo	(3; 1; 5; 1; 1)		Lubricating	
operation, reefer, freezing	522:Support activities for tr	0.64302	🚥 kg*d		lognormal:		market fo	(3; 1; 5; 1; 1)		An ice cons	_
Outputs										• ×	12
Flow	Category	Amount	Unit	Costs/Reven	Uncertainty	Avoided pro	Provider	Data quality	Location	Description	٦
antifouling paint emissio	031:Fishing/0311:Marine fis	1.24878E-5	🚥 kg		lognormal:		market fo	(3; 1; 3; 2; 2)		Mass of soli	
🕸 demersal fish, fresh	031:Fishing/0311:Marine	1.00000	🚥 kg	1.17000 EUR	lognormal:			(3; 1; 3; 1; 1)		Other landi	
O Discarded fish, demersal,	Emission to water/ocean	0.01014	🚥 kg		lognormal:			(3; 1; 5; 1; 1)		Demersal fis	
Ø Methane, chlorodifluoro	Emission to air/low popula	0.00070	🚥 kg		lognormal:			(3; 1; 5; 1; 1)		Cooling age	
Ø plastic litter		0.00014	🚥 kg		none						
waste mineral oil	239:Manufacture of non-m	0.00036	🚥 kg		lognormal:		market fo	(3; 1; 3; 2; 2)		Waste oil fr	
🔟 waste mineral oil	239:Manufacture of non-m	0.01438	🚥 kg		lognormal:		market fo	(3; 1; 3; 2; 2)		Waste oil fr	

Figure 1: Demonstration of how plastic litter appear as an output flow in openLCA.

The total plastic litter of a full life cycle could be calculated by creating a new impact category that accounts for the plastic litter. See Figure 2 and Figure 3 for example calculations of two different processes.

LCa) ×
E Results of: packaging film pro	luction, low density polyethylene packaging film, low density polyethylene APOS, U - RER $ imes$		- 0
E packaging film produ	ction, low density polyethylene packaging film, low density polyethylene APOS, U - RER		
 General information 			
Reference process	Jackaging film production, low density polyethylene packaging film, low density polyethylene APOS, U - RER		
Allocation method	As defined in processes		- 1
			- 1
Target amount	1.0 kg packaging film, low density polyethylene		
Impact assessment method	₫ plastic litter		
	Export to Excel Q_Save result as		
Top 5 contributions to im	act category results - overview		-
· Top 5 contributions to mi	ex category results - over view		
Impact category E plasti	litter 🔹		
	6.478E-3 kg: treatment of waste plastic, mixture, sanitary landfill waste plastic, mixture APOS, U - RoW		- 1
6.0E-3 -	💳 1.970E-3 kg: packaging film production, low density polyethylene packaging film, low density polyethylene APOS, U - RER		
	1.361E-3 kg: treatment of waste plastic, mixture, unsanitary landfill, dry infiltration class (100mm) waste plastic, mixture APC	os, u - Gu	о
4.0E-3 -	1.338E-3 kg: treatment of waste plastic, mixture, unsanitary landfill, moist infiltration class (300mm) waste plastic, mixture A	POS, U - (<u>SLO</u>
	1.006E-3 kg: treatment of waste plastic, mixture, unsanitary landfill, wet infiltration class (500mm) waste plastic, mixture API	OS, U - Gl	0
2.0E-3 -			
			-
General information Inventory re	sults Impact analysis Process results Contribution tree Grouping Locations Sankey diagram LCIA Checks		

Figure 3: Example of plastic litter from process "packaging film production".

It is also possible to display the contribution of different processes connected to the studied process to its total plastic pollution, see Figure 4. In the "locations" tab, it is possible to see where the biggest impact occurs, see Figure 5. In Figure 6, the Sankey diagram produced when

calculating the resulting plastic litter of "packaging film production" is displayed. The diagram shows how different processes contribute to the total plastic litter of the studied process.

						×
Results of: maize gra	n production maize grain APOS, U - RoW $ imes$					-
maize grain pi	oduction maize grain APOS, U -	RoW				
Flow	Ø lorobenzene - Emission to water/surface water	Ψ				
Impact category	E plastic litter	*				
Contribution	Process		Required amount	Total result [kg]	Direct contribution [kg]	1
✓ 100.00%	刧 maize grain production maize grain	APOS, U - RoW	1.00000 kg 💻	0.11142 -	0.10934	1
> 00.73%	제 market for irrigation irrigation APOS	0.17418 m3	0.00081			
> 00.41%	S market for maize seed, for sowing m	0.00322 kg	0.00046			
> 00.31%	I market for packaging, for fertilisers p	0.12064 kg	0.00034			
> 00.12%	司 market for drying of maize straw and	0.00041 m3	0.00013			
> 00.05%	market for potassium chloride potassium	0.01051 kg	5.43972E-5			
> 00.04%	I market for irrigation irrigation APO	0.00225 m3	4.35858E-5			
> 00.02%	S market for irrigation irrigation APOS	5, U - CN	0.04828 m3	2.59203E-5		
> 00.02%	I market for tillage, harrowing, by spring	g tine harrow tillage, harrowing, by sp	2.48630 m2	2.57528E-5		
> 00.02%	➡ market for packaging, for pesticides	packaging, for pesticides APOS, U - G	0.00050 kg	2.23013E-5		
> 00.02%	I market for irrigation irrigation APO	5, U - BR	0.00540 m3	2.16696E-5		
> 00.02%	3 market for tillage, ploughing tillage,	ploughing APOS, U - GLO	0.86042 m2	1.88298E-5		
> 00.02%	a market for tillage, cultivating, chisellin	g tillage, cultivating, chiselling APOS	1.26030 m2	1.78450E-5		
> 00.01%	l market for inorganic phosphorus fertil	iser, as P2O5 inorganic phosphorus fe	0.00366 kg	1.24391E-5		
> 00.01%	arket for tillage, currying, by weeder	I tillage, currying, by weeder I APOS, U.,	1.99720 m2	1.22779E-5		

General information Inventory results Impact analysis Process results Contribution tree Grouping Locations Sankey diagram LCIA Checks

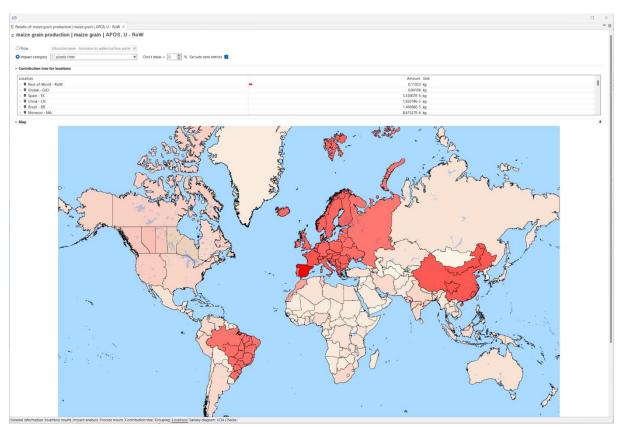


Figure 5: Locations of plastic litter occurring as a result of "maize grain production".

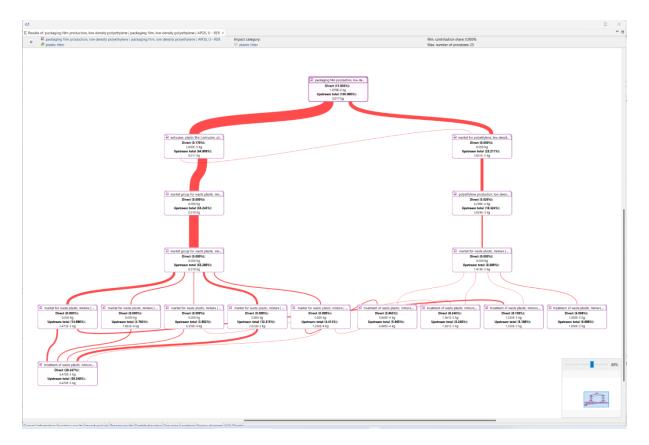
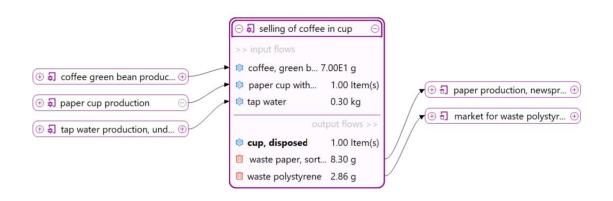



Figure 6: Sankey diagram showing different processes contribution to the total plastic litter from "packaging film production".

When reviewing all processes that now have a plastic output as a result of the extension, the highest plastic litter flows are found for large construction processes, such as airports or powerplants, which is understandable given the large amount of material entering such processes. The lowest plastic litter flows still larger than zero are found for e.g. production of cement, operation of mines and rock crushing.

3.1 Example of a product system

Figure 7: Example of a simplified product system.

If we construct a simplified product system (see Figure 7) based on a case study for selling coffee in a single-use paper cup (Martin, Bunsen, & Ciroth, 2018), taking only the materials and coffee into account (hence ignoring e.g. energy requirements and transport), we could calculate the total plastic litter from the entire system (0.05253 kg plastic/item) and also see where in the supply chain the litter appear, see Figure 8. The contribution and regionalization of the results are displayed in Figure 9 and Figure 10. What we could see in these is that the biggest contributor to the plastic litter in our example is the cultivation of coffee-beans (probably because it is accounted for that plastic coating is used for fertilizers and pesticides as described in Carlini & Drugmand, 2022), and consequently a big impact also appear in Colombia, one of the major coffee-producing countries (ICO, 2022).

ua			o ×
E Results of: selling of coffee in	cup ×		- 0
\blacksquare selling of coffee in c	qu		
 General information 			
Product system	selling of coffee in cup		
Allocation method	As defined in processes		
Target amount	1.0 Item(s) cup, disposed		
Impact assessment method	😫 plastic litter		
	Export to Excel A. Save result as		
 Top 5 contributions to imp Impact category IIII plastic 	act category results - overview		÷
4.0E-2-		g: coffee green bean production, arabica coffee, green bean APOS, U - CO	
		3 kg: establishing orchard establishing orchard APOS, U - RoW	
3.0E-2 -		3 kg: treatment of waste polystyrene, unsanitary landfill, dry infiltration class (100mm) waste polystyrene APOS, U - GLO	
	1.480E	3 kg: fruit tree seedling production, for planting fruit tree seedling, for planting APOS, U - RoW	
2.0E-2-	2.514E-	4 kg: grass seed production, Swiss integrated production, at farm grass seed, Swiss integrated production, at farm APOS, U - CH	
1.0E-2 -		3 kg: Other	

Figure 8: Top 5 contributing processes to plastic litter in the simplified product system.

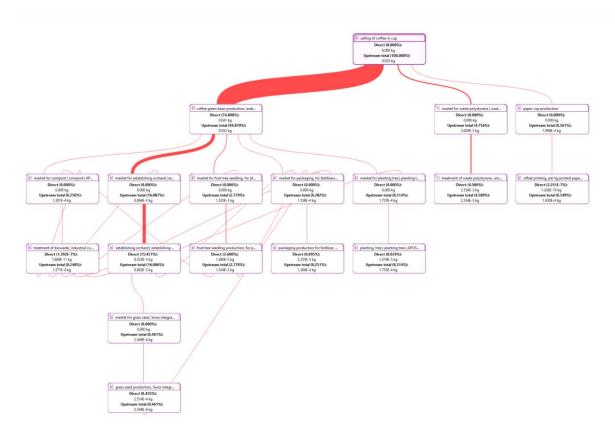


Figure 9: Sankey of the contribution distribution for our simplified example.

Figure 10: Regional distribution of the plastic litter impact for our simplified example.

4 Further work

There are many things that could be done to continue this work, for example:

- As both flow plastic content and littering probability are rough estimates, these estimates could be refined. Initially the groups could be smaller and hence more accurate, and the classification could include more classes. Ideally, the plastic content is estimated individually for each specific flow, and the littering probability for each specific process.
- 2. The flows are not yet put in categories; it is not distinguished where the litter goes (e.g. to soils or marine waters).

- 3. Different geographical regions are expected to have different littering probabilities, based on that the flows of plastic litter are larger in some regions than in others (UNEP, u.d.), and hence a geographical differentiation would be preferable.
- 4. There is currently no differentiation of plastic type nor size of the litter (all plastic litter is accounted for as one impact category). Preferably, one could in the future differentiate between types (PET, PP, PE, PVS, etc) and sizes (macro, micro, or even specified sizes).
- 5. Supposedly, many flows of plastic litter are disregarded in the currently available databases, e.g. cigarette butts (Ciroth & Kuoame, 2019) or aspects of human behaviour.

5 Contact

The database extension will be made available on openLCA Nexus, https://nexus.openlca.org. For any feedback about use, bugs and implementation in openLCA as well as questions or other comments, please contact us:

Julia Gutke, Andreas Ciroth GreenDelta GmbH Kaiserdamm 13, 14057 Berlin, Germany gutke@greendelta.com, ciroth@greendelta.com www.greendelta.com

References

- Carlini, G., & Drugmand, D. (2022). *Sowing a plastic planet how microplastics in agrochemicals are affecting our soils, our food and our future.* Washington DC: CIEL (Center for International Environmental Law.
- Ciroth, A., & Kuoame, N. (2. September 2019). Elementary litter in life cycle inventories, approach and application. Poznan.
- ICO. (January 2022). *Trade Statistics Tables.* Von ico.org: https://ico.org/prices/m1-exports.pdf abgerufen
- Martin, S., Bunsen, J., & Ciroth, A. (2018). *Ceramic cup vs. Paper cup.* Berlin: GreenDelta GmbH.
- Richardson, K., Hardesty, B., & Wilcox, C. (2019). Estimates of fishing gear loss rates at a global scale: A literature review and meta-analysis. *Fish Fish*, 1218–1231.
- Sahajwalla, V., & Gaikwad, V. (2018). The present and future of e-waste plastics recycling. *Current Opinion in Green and Sustainable Chemistry*, 102-107.
- Schlecht, S., & Wellenreuther, F. (2020). *Comparative Life Cycle Assessment of Tetra Pak® carton* packages and alternative packaging systems for beverages and liquid food on the *European market.* Heidelberg: ifeu GmbH.
- UNEP. (kein Datum). *Our planet is choking on plastic*. Von unep.org: https://www.unep.org/interactives/beat-plastic-pollution/abgerufen